التعليم
دكتوراة رياضيات – جامعة العلوم الماليزية 2002
ماجستير رياضيات – جامعة ال البيت 1998
بكالوريوس رياضيات جامعة اليرموك 1993
الاهتمامات البحثية
النمذجة الرياضية في مجالات البيئة والمياة والطاقة
منشورات مختارة
Abdul-wali Al-ajlouni & Hussam Al-Rabai’ah, Fractional-Calculus Diffusion Equation. Nonlinear Biomedical Physics 2010, 4:3doi:10.1186/1753-4631-4-3.
Koh, H.L., Al-Rabai'ah, H.A., D. DeAngelis, Lee, H.L (2004). Modeling Everglades fish ecology: role of temperature, hydrology and toxicity. GIS and Remote Sensing in Hydrology, Water Resources and Environment. IAHS Publ. 289:328-334
المؤتمرات
Modeling total suspended solids transport from dredging in Saudi coastal areas International conference on numerical and optimization solutions Hassan II University Mohammedia, Morocco 2008 December 17-19.
Multiparty computations, some developments International conference on cryptology UPM, Kuala Lumpur June 2008 Malaysia
الخبرات المهنية
- جامعة العين للعلوم والتكنولوجيا – العين - استاذ مشارك - 2018-الان
- جامعة الدمام استاذ مشارك 2016-2018
- جامعة بيردو - الولايات المتحدة الامريكية 2012-2013 أستاذ زائر
- جامعة الطفيلة التقنية 2006 – الان
- جامعة الزرقاء استاذ مساعد 2002 -2006
المواد التدريسية
تفاضل وتكامل – التحليل العددي – ماتلاب – النمذجة الرياضية – البرمجة الخطية – التحويلات التكاملية – المعادلات التفاضلية العادية والجزئية – العلوم الاكتوارية
أهداف التنمية المستدامة المرتبطة بالخبرات
في عام 2015 اتفقت الدول الأعضاء في الأمم المتحدة على 17 هدفًا للتنمية المستدامة لإنهاء الفقر، وحماية الكوكب، وضمان الرفاه للجميع.
تساهم خبرة هذه الشخصية في أهداف التنمية المستدامة التالية:
Viscous dissipated hybrid nanoliquid flow with Darcy–Forchheimer and forced convection over a moving thin needle
سبتمبر 15, 2020
Series solutions for nonlinear time-fractional Schrödinger equations: Comparisons between conformable and Caputo derivatives
سبتمبر 02, 2020
Existence of fractional order semianalytical results for enzyme kinetics model
أغسطس 11, 2020
Fractional dynamical analysis of measles spread model under vaccination corresponding to nonsingular fractional order derivative
مايو 14, 2020
Oscillation criteria for forced and damped nabla fractional difference equations
يونيو 20, 2018
Based on the properties of Riemann–Liouville difference and sum operators, sufficient conditions are established to guarantee the oscillation of solutions for forced and damped nabla fractional difference equations. Numerical examples are presented to show the applicability of the proposed results. We finish the paper by a concluding remark.
Theories and analyses thick hyperbolic paraboloidal composite shells
مايو 13, 2015
This paper presents the stress resultants of hyperbolic paraboloidal shells using higher order shear deformation theory recently developed by Zannon [1]-[3]. The equilibrium equations of motion use Hamilton’s minimum energy principle for a simply supported cross-ply structure by Zannon (TSDTZ)[2][3]. The results are calculated for orthotropic, two-ply unsymmetrical [90/0] shells. The extensional, bending and coupling stiffness parameters are calculated using MATLAB algorithm for laminated composite hyperbolic paraboloidal shells. A comparison of the present study with other researchers in the literature is given, and is in good agreement.
Fractional-calculus diffusion equation
ديسمبر 17, 2010
Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis.