Conference Paper

ATL Transformation of Queueing Networks to Queueing Petri Nets

Feb 19, 2017

DOI: 10.5220/0006110002610268

Published in: MODELSWARD 2017

Publisher: SCITEPRESS

/ Issam Al-Azzoni

This paper presents an approach for model transformation from Queueing Network Models (QNMs) into Queueing Petri Nets (QPNs). This would open up the benefits of QPNs in analyzing the performance of QNMs. We present metamodels for QNMs and QPNs, and then present the transformation rules in the ATLmodel transformation language. To validate our approach, we apply it to analyze the performance of a QNM and compare the results with those obtained using analytic methods. Although the approach is presented using ATL and Ecore meta modeling language in the context of the Eclipse Modeling Project, it can be realized using other modeling frameworks and languages.

Other Researches

On Utilizing Model Transformation for the Performance Analysis of Queueing Networks

In this paper, we present an approach for model transformation from Queueing Network Models (QNMs) into Queueing Petri Nets (QPNs). The performance of QPNs can be analyzed using a powerful simulation engine, SimQPN, designed to exploit the knowledge...

An Improved Coloured Petri Net Model for Software Component Allocation on Heterogeneous Embedded Systems

We extend an approach to component allocation on heterogeneous embedded systems using Coloured Petri Nets (CPNs). We improve the CPN model for the embedded systems and outline a technique that exploits CPN Tools, a well-known CPN tool, to efficientl...

Model-to-Model based Approach for Software Component Allocation in Embedded Systems

Due to the popularity and heterogeneity of embedded systems, the problem of software component (SW-component) allocation in such systems is receiving increasing attention. Addressing this problem using a graphical modeling language s...

Server consolidation for heterogeneous computer clusters using Colored Petri Nets and CPN Tools

In this paper, we present a new approach to server consolidation in heterogeneous computer clusters using Colored Petri Nets (CPNs). Server consolidation aims to reduce energy costs and improve resource utilization by reducing the number of servers ...