0

Millimeter-Wave Compact EBG Structure for Mutual Coupling Reduction Applications

Jul 01, 2015

DOI:

Published in: IEEE Transactions on Antennas and Propagation

Mu'ath J. Al-HasanTayeb A. DenidniTayeb A. DenidniA. R SebakA. R Sebak

A new millimeter-wave (MMW), electromagnetic band-gap (EBG) structure is presented. The proposed EBG structure without the use of metallic vias or vertical components is formed by etching two slots and adding two connecting bridges to a conventional uniplanar EBG unit-cell. The transmission characteristics of the proposed EBG structure are measured. Results show that the proposed EBG structure has a wide bandgap around the 60 GHz band. The size of the proposed EBG unit-cell is 78% less than a conventional uniplanar EBG, and 72% less than a uniplanar-compact EBG (UC-EBG) operating at the same frequency band. Moreover, and despite the fabrication limitations at the 60 GHz band, the proposed EBG unit-cell provides at least 12% more size reduction than any other planar EBG structures at microwave frequencies. Its enhanced performance and applicability to reduce mutual coupling in antenna arrays are then investigated. Results show a drastic decrease in the mutual coupling level. This EBG structure can find its applications in MMW wireless communication systems.

Other Researches

Design of Ultra-Wideband Circularly Polarized Multiple-Input Multiple-Output Antenna with Polarization Diversity

This paper presents an ultra-wideband (UWB) circularly polarized (CP) multiple-input multiple-output (MIMO) antenna with polarization diversity. The proposed antenna is comprised of a coplanar waveguide feed with modified geometry of the coplanar gr...

A Novel Design of Radiation Pattern-Reconfigurable Antenna System for Millimeter-Wave 5G Applications

In this paper, a novel design of dielectric resonator antenna (DRA) with a reconfigurable radiation pattern capability is presented. Reconfigurability in the azimuth plane is achieved by symmetrically placing six electromagnetic bandgap (EBG) sec...

On the Path Loss Model for 5-GHz Microwave-Based Pinless Subsea Connectors

In this work, a simple propagation channel model for microwave-based pinless subsea connectors in the 5 GHz band is presented. Both high electromagnetic attenuation in seawater due to absorption and the near-field working conditions typically presen...

Hybrid Isolator for Mutual-Coupling Reduction in Millimeter-Wave MIMO Antenna Systems

A novel millimeter-wave hybrid isolator is presented to reduce the mutual-coupling (MC) between two closely-spaced dielectric resonator (DR) antennas at 60 GHz. The proposed hybrid isolator consists of a combination of a new uni-planar compact elect...

Experimental Validation of Receiver Sensitivity for 100-Mbps Data Rates in Seawater by Using 2.4 GHz-Low-Power Electronics

This paper presents an experimental validation of the receiver sensitivity for 100- Mbps microwave data communications in a typical subsea environment. It is demonstrated that underwater microwave-based pinless connector solutions can perform under ...

High gain dielectric resonator antenna with soft cavity and soft surface for millimeter-wave applications

In this paper, a 60 GHz high-gain dielectric resonator antenna (DRA), integrated with soft surface and capacitive soft cavity is presented. The soft surface consists of a perforated dielectric cylinder, shorting vias, and three concentric layers of ...

Millimeter-Wave EBG-Based Aperture-Coupled Dielectric Resonator Antenna

Design, fabrication and testing of millimeter-wave (MMW) dielectric resonator antenna (DRA) surrounded by electromagnetic band-gap (EBG) structure are presented. For this purpose, MMW mushroom-like, circular patch EBG (CP-EBG) cell is designed and f...